Variables aléatoires et lois de probabilité

§1. Définition

Etant donné une expérience aléatoire de catégorie d'épreuve Ω , on appelle variable aléatoire, toute fonction $X:\Omega \to \mathbb{R}$

EX1: On lance un dé non pipé et on observe le point obtenu.

$$X: \{1,2,3,4,5,6\} \to \mathbb{R}, x \mapsto X(x) = x$$

EX2: On lance trois fois une pièce de monnaie et on compte le nombre de "face"

$$X: \{p, f\}^3 \to \mathbb{R}$$
 et par exemple $X((f, p, f)) = 2$

La probabilité que cette variable prenne une valeur donnée, ou un ensemble de valeurs données, égale la probabilité de la réalisation de l'événement associé à cette valeur ou cet ensemble de valeurs.

EX3: Dans le cas de EX1, $p(X=4) = \frac{1}{6}$ et $p(X=2 \text{ ou } X=6) = p(X \in \{2,6\}) = \frac{1}{3}$.

EX4: Dans le cas de EX2, $p(X = 2) = \frac{\#\{(f,f,p),(f,p,f),(p,f,f)\}}{\#\{(x,y,z)|x,y,z \in \{p,f\}\}} = \frac{3}{8}$. Calculez p(X = 0), p(X = 1), p(X = 3), p(X = 4).

La **loi de probabilité** de la variable aléatoire X est la fonction qui exprime la probabilité correspondant à chacune des valeurs que cette variable peut prendre.

EX5: Dans le cas de EX1, la loi de probabilité est décrite par le tableau

i	1	2	3	4	5	6
p(X=i)	1/6	1/6	1/6	1/6	1/6	1/6

C'est la fonction constante $\Omega \to \mathbb{R}, x \mapsto \frac{1}{6}$

EX6: Dans le cas de EX2, la loi de probabilité est décrite par le tableau

n	0	1	2	3
p(X=n)	1/8	3/8	3/8	1/8

§2. Espérance mathématique

L'**espérance mathématique** de la variable aléatoire X est donnée par la formule $E(X) = \sum x \cdot p(X = x)$

EX7: Dans le cas de EX1,
$$E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3,5$$

C'est la moyenne arithmétique des résultats possibles de l'expérience aléatoire.

EX8: Dans le cas de EX2,
$$E(X) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{12}{8} = 1,5$$

REM: L'espérance mathématique d'une variable aléatoire, c'est la moyenne arithmétique de ses valeurs pondérée par leur probabilité.

EX9: Supposons le jeu suivant:

En tirant une carte d'un jeu de 52 cartes, on vous donne 1 € si vous tirez un coeur, 2 € si vous tirez un carreau, 5 € si vous tirez un trèfle et 10 € si vous tirez un pique. La question est de savoir jusqu'à combien d'euros vous pouvez miser avant chaque tirage pour être certain de gagner à long terme.

X	X(x)	p(x)	x.p(x)
coeur	1	0,25	0,25
carreau	2	0,25	0,50
trèfle	5	0,25	1,25
pique	10	0,25	2,50
E(X)			4,50

Le gain attendu, si on joue ce jeu suffisamment longtemps, est donc de 4,50 €. Vous serez dès lors gagnant si vous misez $4 \in$, mais perdant si vous misez $5 \in$.

REM: Vous pouvez constater que nous avons noté p(x) pour p(X = x). Lorsque vous vous intéresserez à la littérature qui concerne la statistique et les probabilités, vous pourrez observer que la terminologie et les notations qui désignent une même notion sont souvent diverses et variées.

EX10: Supposons le même jeu, avec les mêmes règles, mais le paquet de cartes contient 20 coeurs, 15 carreaux, 10 trèfles et 5 piques.

Il en résulte le tableau

X	X(x)	p(x)	x.p(x)
coeur	1	0,40	0,40
carreau	2	0,30	0,60
trèfle	5	0,20	1,00
pique	10	0,10	1,00
E(X)			3,00

Tirez-en les conclusions.

§3. Variance et écart-type

La **variance** de la variable aléatoire X égale
$$V(X) = \sum p(x) \cdot (X(x) - E(X))^2$$

L'écart-type de la variable aléatoire X égale $\sigma(X) = \sqrt{V(X)}$

EX11: Reprenons EX9 et calculons la variance et l'écart-type

X	X(x)	p(x)	x.p(x)	X(x)- $E(x)$	$(X(x)-E(x))^2$	$p(x).(X(x)-E(x))^2$
coeur	1	0,25	0,25	-3,50	12,25	3,0625
carreau	2	0,25	0,50	-2,50	6,25	1,5625
trèfle	5	0,25	1,25	0,50	0,25	0,0625
pique	10	0,25	2,50	5,50	30,25	7,5625
			E(X) = 4,50			V(X) = 12,25
			L(X) = 4,30			$\sigma(X) = 3,50$

REM: L'écart-type (ou déviation standard, ou écart quadratique moyen) est un critère de dispersion. Il mesure l'écart entre les résultats et la moyenne (ou l'espérance mathématique) observée.

EX12: Calculez la variance et l'écart-type de la variable aléatoire X décrite dans EX10. Personnellement, j'ai trouvé: V(X) = 7.6 et $\sigma(X) = 2.76$.